

Les enjeux techniques des circuits piscicoles recirculés

Détails des structures pilotes du projets APIVA®

Matthieu GAUMÉ, ITAVI

L'ENJEU technique de l'élevage PISCICOLE

=

« maintenir un environnement propice à la vie, au bien-être et à la croissance des poissons »

- ✓ Qualité de l'eau d'élevage optimale par rapport aux préférendum de l'espèce (température, pH, oxygène, NH₄+, NO₂-, NO₃- etc. etc. ...),
- ✓ Maintien d'un statut sanitaire indemne de pathologies
- ✓ Conditions d'ambiance d'élevage adaptées à l'espèce (densité, courantologie, photopériode, comportement etc. ...)
- ✓ Alimentation de qualité, en quantité et adapté au stade physiologique (composition, taille, mode de distribution etc. ...)

L'ENJEU <u>technique</u> de l'élevage piscicole EN CIRCUIT RECIRCULÉ

Le faire en réutilisant plus de 90% de l'eau d'élevage!

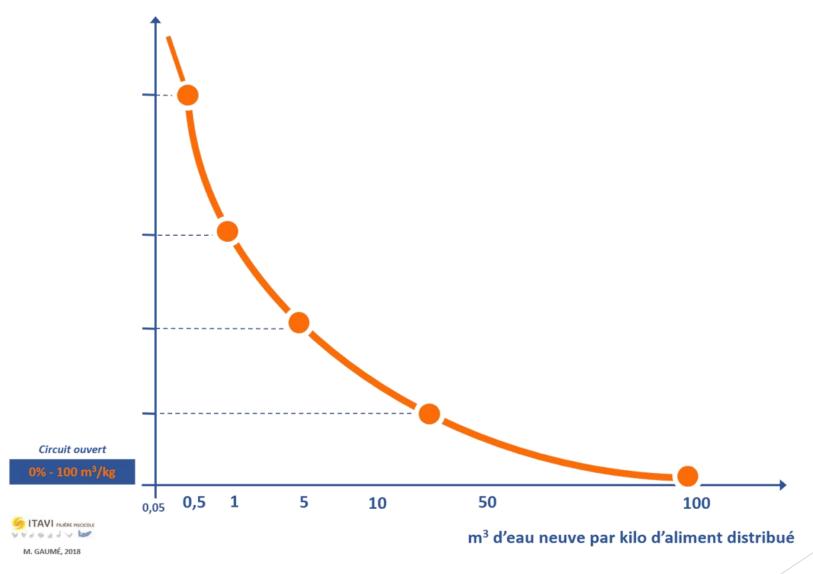
LES ENJEUX <u>techniques</u> SPÉCIFIQUES aux élevages piscicoles EN CIRCUITS RECIRCULÉS

- → Gestion de la qualité de l'eau d'élevage,
- → Gestion sanitaire,
- → Gestion des conditions d'ambiance d'élevage (élevages sous bâtiment)

La grandeur « m³ d'eau par kg d'aliment »

un repère pour la compréhension des systèmes d'élevages piscicoles

Le calcul:

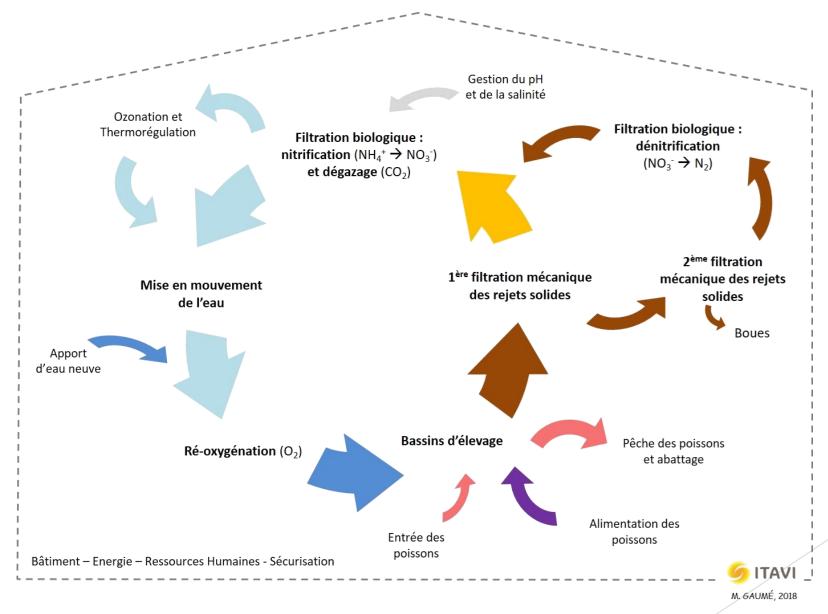

- → Débit d'eau neuve : en l/s puis m³/h puis m³/j
- → Quantité d'aliment distribuée par jour

Quantité d'aliment distribuée (par jour)

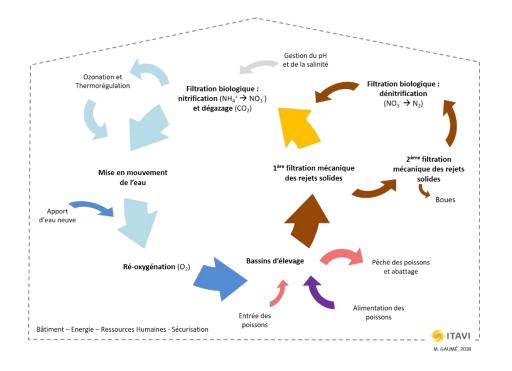
Plus la valeur est faible, plus le systèmes est « fermé », ou encore plus sont « taux de recirculation » est important (en %)

INTENSITÉ DE RECIRCULATION DES SYSTÈMES D'ÉLEVAGES PISCICOLES

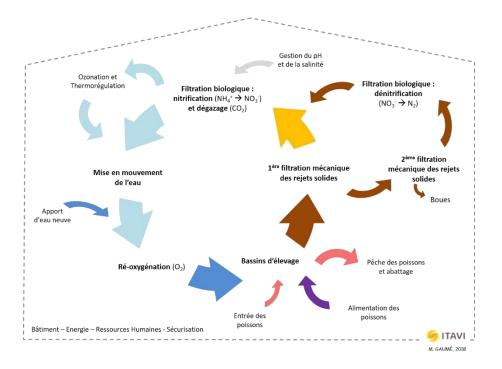
Colloque « Aquaponie » - APIVA N°3: 18 et 19 décembre, Paris



Augmenter le taux de fermeture (réduire les m³/kg)


- Augmenter la technicité globale du système,
- Augmenter le besoin en connaissances pour maintenir le système,
- Augmenter les besoins en monitoring,
- Augmenter le niveau d'interventions nécessaires (humaines ou automatismes),
- Augmenter le risque lié aux aléas techniques,
- Augmenter le risque lié aux approvisionnements en intrants (eau, énergie, O₂ etc. ...).

Exemple de schéma fonctionnel d'un système recirculé < 0,1 m³/kg



ENJEUX techniques de l'élevage piscicole EN CIRCUIT RECIRCULÉ

Que tout cela se passe parfaitement 7j/7, 24h/24 et 365 j/an!

Veiller sur <u>l'ensemble</u> des facteurs de variation du fonctionnement de chacun des organes du système :

Par exemples ...

- Filtre biologique nitrification : température, pH, [O₂] dissous, surface de fixation, rapport C/N, temps de contact, vitesse de filtration (mm/h) etc. ...
- Filtration mécanique : temps de contact, vitesses de sédimentation, taux de floculation, débit de recirculation, débit de contre-lavage, taux de colmatage etc. etc. ...

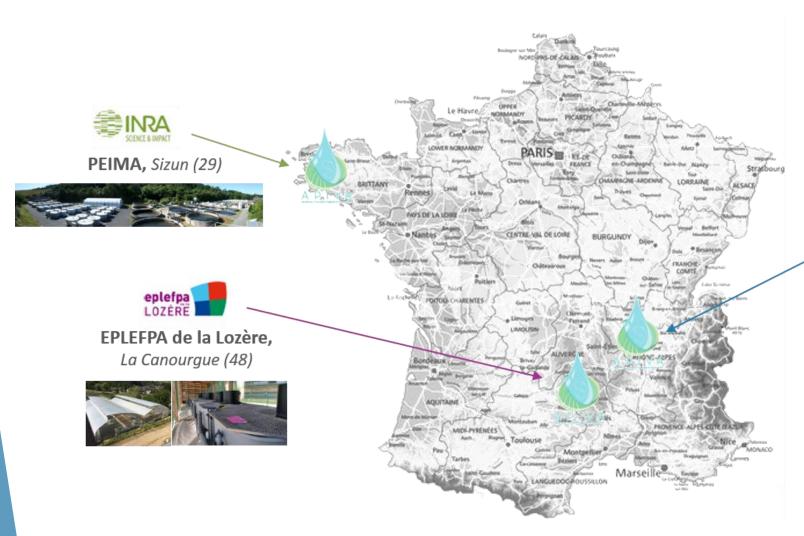
Et bien d'autres encore ...

Liberd - Égalist - Fraternist
RÉPUBLIQUE FRANÇAISE

MINISTÈRE
DE L'AGRICULTURE
ET DE
L'ALIMENTATION

Avec la contribution/financière du

Les enjeux techniques des circuits piscicoles recirculés


Détails des structures pilotes du projets APIVA®

Matthieu GAUMÉ, ITAVI

pilotes expérimentaux d'aquaponie dans des contextes complémentaires

RATHO, Brindas (69)

3 pilotes expérimentaux d'aquaponie ...

... et une mutualisation de compétences et de connaissances

Un compartiment horticole « greffé » sur un système recirculé poisson expérimental existant.

Un système recirculé poisson « greffé » sur une station expérimentale horticole existante.

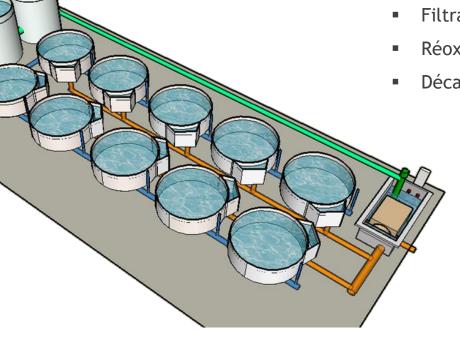
La création d'une nouvelle plateforme aquaponique pédagogique et d'expérimentation.

Un compartiment horticole « greffé » sur un système recirculé poisson expérimental existant.

Zone aquacole : 260 m²

Zone horticole: 60 m²

Un compartiment horticole « greffé » sur un système recirculé poisson expérimental existant.



Traitement des MES par filtre à tambour rotatif

Filtration biologique sur lit fluidisé

Réoxygénation par plateforme à jet (O₂)

Décantation - floculation - concentration des boues

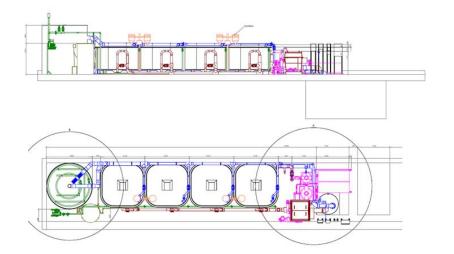
Un compartiment horticole « greffé » sur un système recirculé poisson expérimental existant.

- Cultures horticoles en conditions extérieures
- Supports de cultures diversifiés : Raft, graviers, NFT
- Instrumentation de précision pour estimation des débits, temps de résidence, flux etc. ...

Un système recirculé poisson « greffé » sur une station expérimentale horticole existante.

Zone aquacole : 55 m²

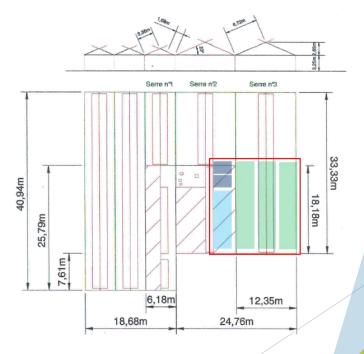
Zone horticole: 120 m²



Colloque « Aquaponie » - APIVA N°3: 18 et 19 décembre, Paris

Un système recirculé poisson « greffé » sur une station expérimentale horticole existante.

- Traitement des MES par filtre à tambour rotatif
- Filtration biologique sur lit fluidisé
- Ré oxygénation par diffusion d'air (soufflante)
- Décantation floculation minéralisation concentration des boues



Un système recirculé poisson « greffé » sur une station expérimentale horticole existante.

- Serre chapelle verre chauffée (au sol)
- Gestion de l'ambiance automatisée (ouvrants, écrans thermiques ...)
- Supports de cultures divers et modulables : rafts, TAM, goute à goute, ZipGrow ...
- Système de recyclage complet de l'eau préexistant (fosses)

La création d'une nouvelle plateforme aquaponique pédagogique et d'expérimentation.

Zone aquacole: 85 m²

Zone horticole: 400 m²

La création d'une nouvelle plateforme aquaponique pédagogique et d'expérimentation.

- 6 bassins d'élevages de 2,7 m³
- Traitement des MES par filtre à tambour rotatif
- Filtration biologique sur lit fluidisé
- Décantation lombrifiltration des boues

La création d'une nouvelle plateforme aquaponique pédagogique et d'expérimentation.

- Serre froide plastique gonflée, double spin jumelée
- Supports de cultures : rafts, TAM, gouttières (fraises)

pilotes expérimentaux d'aquaponie et leurs caractéristiques de dimensionnement

	APIVA® PEIMA, Sizun	APIVA® RATHO, Brindas	APIVA® EPL Lozère, La Canourgue
Structure horticole	Culture en extérieur	Serre verre	Serre plastique double paroi
Surface de culture	120 m ²	120 m ²	400 m ²
Supports de culture	Raft + NFT + graviers	Raft + TAM + NFT + ZipGrow	Raft + TAM + gouttières
Surface d'élevage	260 m ²	55 m ²	85 m²
Volume d'élevage	60 m ³	15 m ³	16 m ³
Eau neuve	Lac du Drennec - Source	Eau de ville - réseau agricole	Source
Capacité de production	2 600 kg/an	700 kg/an	750 kg/an
Système d'oxygénation	Plateforme à jet (O ₂)	Aération (soufflante)	Aération + colonnes dégazage
Ø maille filtre mécanique	60 μm	60 μm	60 μm
Filtre biologique	lit fluidisé	lit fluidisé	lit fluidisé
Volume de médias	6,4 m³	2,5 m ³	2,7 m ³
Surface spécifique	850 m ² /m ³	800 m ² /m ³	800 m ² /m ³

pilotes expérimentaux d'aquaponie et leurs caractéristiques de fonctionnement

	APIVA® PEIMA, Sizun	APIVA® RATHO, Brindas	APIVA® EPL Lozère, La Canourgue
Densité d'élevage	30 - 80 kg/m³	20 - 40 kg/m³	15 - 40 kg/m³
Débit circulant	100 - 150 m²/h	45 m²/h	45 m ² /h
Renouvellement bassins	2,5 r/h	3 r/h	3 r/h
Quantité d'aliment distribuée	20 kg/j	kg/j	kg/j
Densité de plantation	20 - 50 p/m²	36 p/m²	16 - 50 p/m² et 8 p/ml (fraises)
TAUX D'OUVERTURE	3 - 6 m ³ /kg	0,2 - 0,5 m ³ /kg	0,3 - 0,4 m ³ /kg
Ratio « aquaponique »	50 - 150 g/m²	15 - 100 g/m²	30 - 40 g/m²

Des questions?

Merci de votre attention et de votre participation

https://projetapiva.wordpress.com/

https://www.itavi.asso.fr

Avec la contribution financière du Compte d'Affectation Spéciale

ET DE L'ALIMENTATION